Struct rand::distributions::weighted::alias_method::WeightedIndex
source · pub struct WeightedIndex<W: Weight> { /* private fields */ }Expand description
A distribution using weighted sampling to pick a discretely selected item.
Sampling a WeightedIndex<W> distribution returns the index of a randomly
selected element from the vector used to create the WeightedIndex<W>.
The chance of a given element being picked is proportional to the value of
the element. The weights can have any type W for which a implementation of
Weight exists.
Performance
Given that n is the number of items in the vector used to create an
WeightedIndex<W>, WeightedIndex<W> will require O(n) amount of
memory. More specifically it takes up some constant amount of memory plus
the vector used to create it and a Vec<u32> with capacity n.
Time complexity for the creation of a WeightedIndex<W> is O(n).
Sampling is O(1), it makes a call to Uniform<u32>::sample and a call
to Uniform<W>::sample.
Example
use rand::distributions::weighted::alias_method::WeightedIndex;
use rand::prelude::*;
let choices = vec!['a', 'b', 'c'];
let weights = vec![2, 1, 1];
let dist = WeightedIndex::new(weights).unwrap();
let mut rng = thread_rng();
for _ in 0..100 {
// 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
println!("{}", choices[dist.sample(&mut rng)]);
}
let items = [('a', 0), ('b', 3), ('c', 7)];
let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap();
for _ in 0..100 {
// 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
println!("{}", items[dist2.sample(&mut rng)].0);
}Implementations§
source§impl<W: Weight> WeightedIndex<W>
impl<W: Weight> WeightedIndex<W>
sourcepub fn new(weights: Vec<W>) -> Result<Self, WeightedError>
pub fn new(weights: Vec<W>) -> Result<Self, WeightedError>
Creates a new WeightedIndex.
Returns an error if:
- The vector is empty.
- The vector is longer than
u32::MAX. - For any weight
w:w < 0orw > maxwheremax = W::MAX / weights.len(). - The sum of weights is zero.