1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
use super::batch_semaphore as ll; // low level implementation
use super::{AcquireError, TryAcquireError};
#[cfg(all(tokio_unstable, feature = "tracing"))]
use crate::util::trace;
use std::sync::Arc;

/// Counting semaphore performing asynchronous permit acquisition.
///
/// A semaphore maintains a set of permits. Permits are used to synchronize
/// access to a shared resource. A semaphore differs from a mutex in that it
/// can allow more than one concurrent caller to access the shared resource at a
/// time.
///
/// When `acquire` is called and the semaphore has remaining permits, the
/// function immediately returns a permit. However, if no remaining permits are
/// available, `acquire` (asynchronously) waits until an outstanding permit is
/// dropped. At this point, the freed permit is assigned to the caller.
///
/// This `Semaphore` is fair, which means that permits are given out in the order
/// they were requested. This fairness is also applied when `acquire_many` gets
/// involved, so if a call to `acquire_many` at the front of the queue requests
/// more permits than currently available, this can prevent a call to `acquire`
/// from completing, even if the semaphore has enough permits complete the call
/// to `acquire`.
///
/// To use the `Semaphore` in a poll function, you can use the [`PollSemaphore`]
/// utility.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// #[tokio::main]
/// async fn main() {
///     let semaphore = Semaphore::new(3);
///
///     let a_permit = semaphore.acquire().await.unwrap();
///     let two_permits = semaphore.acquire_many(2).await.unwrap();
///
///     assert_eq!(semaphore.available_permits(), 0);
///
///     let permit_attempt = semaphore.try_acquire();
///     assert_eq!(permit_attempt.err(), Some(TryAcquireError::NoPermits));
/// }
/// ```
///
/// ## Limit the number of simultaneously opened files in your program
///
/// Most operating systems have limits on the number of open file
/// handles. Even in systems without explicit limits, resource constraints
/// implicitly set an upper bound on the number of open files. If your
/// program attempts to open a large number of files and exceeds this
/// limit, it will result in an error.
///
/// This example uses a Semaphore with 100 permits. By acquiring a permit from
/// the Semaphore before accessing a file, you ensure that your program opens
/// no more than 100 files at a time. When trying to open the 101st
/// file, the program will wait until a permit becomes available before
/// proceeding to open another file.
/// ```
/// use std::io::Result;
/// use tokio::fs::File;
/// use tokio::sync::Semaphore;
/// use tokio::io::AsyncWriteExt;
///
/// static PERMITS: Semaphore = Semaphore::const_new(100);
///
/// async fn write_to_file(message: &[u8]) -> Result<()> {
///     let _permit = PERMITS.acquire().await.unwrap();
///     let mut buffer = File::create("example.txt").await?;
///     buffer.write_all(message).await?;
///     Ok(()) // Permit goes out of scope here, and is available again for acquisition
/// }
/// ```
///
/// ## Limit the number of incoming requests being handled at the same time
///
/// Similar to limiting the number of simultaneously opened files, network handles
/// are a limited resource. Allowing an unbounded amount of requests to be processed
/// could result in a denial-of-service, among many other issues.
///
/// This example uses an `Arc<Semaphore>` instead of a global variable.
/// To limit the number of requests that can be processed at the time,
/// we acquire a permit for each task before spawning it. Once acquired,
/// a new task is spawned; and once finished, the permit is dropped inside
/// of the task to allow others to spawn. Permits must be acquired via
/// [`Semaphore::acquire_owned`] to be movable across the task boundary.
/// (Since our semaphore is not a global variable — if it was, then `acquire` would be enough.)
///
/// ```no_run
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
/// use tokio::net::TcpListener;
///
/// #[tokio::main]
/// async fn main() -> std::io::Result<()> {
///     let semaphore = Arc::new(Semaphore::new(3));
///     let listener = TcpListener::bind("127.0.0.1:8080").await?;
///
///     loop {
///         // Acquire permit before accepting the next socket.
///         //
///         // We use `acquire_owned` so that we can move `permit` into
///         // other tasks.
///         let permit = semaphore.clone().acquire_owned().await.unwrap();
///         let (mut socket, _) = listener.accept().await?;
///
///         tokio::spawn(async move {
///             // Do work using the socket.
///             handle_connection(&mut socket).await;
///             // Drop socket while the permit is still live.
///             drop(socket);
///             // Drop the permit, so more tasks can be created.
///             drop(permit);
///         });
///     }
/// }
/// # async fn handle_connection(_socket: &mut tokio::net::TcpStream) {
/// #   // Do work
/// # }
/// ```
///
/// ## Prevent tests from running in parallel
///
/// By default, Rust runs tests in the same file in parallel. However, in some
/// cases, running two tests in parallel may lead to problems. For example, this
/// can happen when tests use the same database.
///
/// Consider the following scenario:
/// 1. `test_insert`: Inserts a key-value pair into the database, then retrieves
///    the value using the same key to verify the insertion.
/// 2. `test_update`: Inserts a key, then updates the key to a new value and
///    verifies that the value has been accurately updated.
/// 3. `test_others`: A third test that doesn't modify the database state. It
///    can run in parallel with the other tests.
///
/// In this example, `test_insert` and `test_update` need to run in sequence to
/// work, but it doesn't matter which test runs first. We can leverage a
/// semaphore with a single permit to address this challenge.
///
/// ```
/// # use tokio::sync::Mutex;
/// # use std::collections::BTreeMap;
/// # struct Database {
/// #   map: Mutex<BTreeMap<String, i32>>,
/// # }
/// # impl Database {
/// #    pub const fn setup() -> Database {
/// #        Database {
/// #            map: Mutex::const_new(BTreeMap::new()),
/// #        }
/// #    }
/// #    pub async fn insert(&self, key: &str, value: i32) {
/// #        self.map.lock().await.insert(key.to_string(), value);
/// #    }
/// #    pub async fn update(&self, key: &str, value: i32) {
/// #        self.map.lock().await
/// #            .entry(key.to_string())
/// #            .and_modify(|origin| *origin = value);
/// #    }
/// #    pub async fn delete(&self, key: &str) {
/// #        self.map.lock().await.remove(key);
/// #    }
/// #    pub async fn get(&self, key: &str) -> i32 {
/// #        *self.map.lock().await.get(key).unwrap()
/// #    }
/// # }
/// use tokio::sync::Semaphore;
///
/// // Initialize a static semaphore with only one permit, which is used to
/// // prevent test_insert and test_update from running in parallel.
/// static PERMIT: Semaphore = Semaphore::const_new(1);
///
/// // Initialize the database that will be used by the subsequent tests.
/// static DB: Database = Database::setup();
///
/// #[tokio::test]
/// # async fn fake_test_insert() {}
/// async fn test_insert() {
///     // Acquire permit before proceeding. Since the semaphore has only one permit,
///     // the test will wait if the permit is already acquired by other tests.
///     let permit = PERMIT.acquire().await.unwrap();
///
///     // Do the actual test stuff with database
///
///     // Insert a key-value pair to database
///     let (key, value) = ("name", 0);
///     DB.insert(key, value).await;
///
///     // Verify that the value has been inserted correctly.
///     assert_eq!(DB.get(key).await, value);
///
///     // Undo the insertion, so the database is empty at the end of the test.
///     DB.delete(key).await;
///
///     // Drop permit. This allows the other test to start running.
///     drop(permit);
/// }
///
/// #[tokio::test]
/// # async fn fake_test_update() {}
/// async fn test_update() {
///     // Acquire permit before proceeding. Since the semaphore has only one permit,
///     // the test will wait if the permit is already acquired by other tests.
///     let permit = PERMIT.acquire().await.unwrap();
///
///     // Do the same insert.
///     let (key, value) = ("name", 0);
///     DB.insert(key, value).await;
///
///     // Update the existing value with a new one.
///     let new_value = 1;
///     DB.update(key, new_value).await;
///
///     // Verify that the value has been updated correctly.
///     assert_eq!(DB.get(key).await, new_value);
///
///     // Undo any modificattion.
///     DB.delete(key).await;
///
///     // Drop permit. This allows the other test to start running.
///     drop(permit);
/// }
///
/// #[tokio::test]
/// # async fn fake_test_others() {}
/// async fn test_others() {
///     // This test can run in parallel with test_insert and test_update,
///     // so it does not use PERMIT.
/// }
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// #   test_insert().await;
/// #   test_update().await;
/// #   test_others().await;
/// # }
/// ```
///
/// ## Rate limiting using a token bucket
///
/// This example showcases the [`add_permits`] and [`SemaphorePermit::forget`] methods.
///
/// Many applications and systems have constraints on the rate at which certain
/// operations should occur. Exceeding this rate can result in suboptimal
/// performance or even errors.
///
/// This example implements rate limiting using a [token bucket]. A token bucket is a form of rate
/// limiting that doesn't kick in immediately, to allow for short bursts of incoming requests that
/// arrive at the same time.
///
/// With a token bucket, each incoming request consumes a token, and the tokens are refilled at a
/// certain rate that defines the rate limit. When a burst of requests arrives, tokens are
/// immediately given out until the bucket is empty. Once the bucket is empty, requests will have to
/// wait for new tokens to be added.
///
/// Unlike the example that limits how many requests can be handled at the same time, we do not add
/// tokens back when we finish handling a request. Instead, tokens are added only by a timer task.
///
/// Note that this implementation is suboptimal when the duration is small, because it consumes a
/// lot of cpu constantly looping and sleeping.
///
/// [token bucket]: https://en.wikipedia.org/wiki/Token_bucket
/// [`add_permits`]: crate::sync::Semaphore::add_permits
/// [`SemaphorePermit::forget`]: crate::sync::SemaphorePermit::forget
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
/// use tokio::time::{interval, Duration};
///
/// struct TokenBucket {
///     sem: Arc<Semaphore>,
///     jh: tokio::task::JoinHandle<()>,
/// }
///
/// impl TokenBucket {
///     fn new(duration: Duration, capacity: usize) -> Self {
///         let sem = Arc::new(Semaphore::new(capacity));
///
///         // refills the tokens at the end of each interval
///         let jh = tokio::spawn({
///             let sem = sem.clone();
///             let mut interval = interval(duration);
///             interval.set_missed_tick_behavior(tokio::time::MissedTickBehavior::Skip);
///
///             async move {
///                 loop {
///                     interval.tick().await;
///
///                     if sem.available_permits() < capacity {
///                         sem.add_permits(1);
///                     }
///                 }
///             }
///         });
///
///         Self { jh, sem }
///     }
///
///     async fn acquire(&self) {
///         // This can return an error if the semaphore is closed, but we
///         // never close it, so this error can never happen.
///         let permit = self.sem.acquire().await.unwrap();
///         // To avoid releasing the permit back to the semaphore, we use
///         // the `SemaphorePermit::forget` method.
///         permit.forget();
///     }
/// }
///
/// impl Drop for TokenBucket {
///     fn drop(&mut self) {
///         // Kill the background task so it stops taking up resources when we
///         // don't need it anymore.
///         self.jh.abort();
///     }
/// }
///
/// #[tokio::main]
/// # async fn _hidden() {}
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
///     let capacity = 5;
///     let update_interval = Duration::from_secs_f32(1.0 / capacity as f32);
///     let bucket = TokenBucket::new(update_interval, capacity);
///
///     for _ in 0..5 {
///         bucket.acquire().await;
///
///         // do the operation
///     }
/// }
/// ```
///
/// [`PollSemaphore`]: https://docs.rs/tokio-util/latest/tokio_util/sync/struct.PollSemaphore.html
/// [`Semaphore::acquire_owned`]: crate::sync::Semaphore::acquire_owned
#[derive(Debug)]
pub struct Semaphore {
    /// The low level semaphore
    ll_sem: ll::Semaphore,
    #[cfg(all(tokio_unstable, feature = "tracing"))]
    resource_span: tracing::Span,
}

/// A permit from the semaphore.
///
/// This type is created by the [`acquire`] method.
///
/// [`acquire`]: crate::sync::Semaphore::acquire()
#[must_use]
#[clippy::has_significant_drop]
#[derive(Debug)]
pub struct SemaphorePermit<'a> {
    sem: &'a Semaphore,
    permits: u32,
}

/// An owned permit from the semaphore.
///
/// This type is created by the [`acquire_owned`] method.
///
/// [`acquire_owned`]: crate::sync::Semaphore::acquire_owned()
#[must_use]
#[clippy::has_significant_drop]
#[derive(Debug)]
pub struct OwnedSemaphorePermit {
    sem: Arc<Semaphore>,
    permits: u32,
}

#[test]
#[cfg(not(loom))]
fn bounds() {
    fn check_unpin<T: Unpin>() {}
    // This has to take a value, since the async fn's return type is unnameable.
    fn check_send_sync_val<T: Send + Sync>(_t: T) {}
    fn check_send_sync<T: Send + Sync>() {}
    check_unpin::<Semaphore>();
    check_unpin::<SemaphorePermit<'_>>();
    check_send_sync::<Semaphore>();

    let semaphore = Semaphore::new(0);
    check_send_sync_val(semaphore.acquire());
}

impl Semaphore {
    /// The maximum number of permits which a semaphore can hold. It is `usize::MAX >> 3`.
    ///
    /// Exceeding this limit typically results in a panic.
    pub const MAX_PERMITS: usize = super::batch_semaphore::Semaphore::MAX_PERMITS;

    /// Creates a new semaphore with the initial number of permits.
    ///
    /// Panics if `permits` exceeds [`Semaphore::MAX_PERMITS`].
    #[track_caller]
    pub fn new(permits: usize) -> Self {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let resource_span = {
            let location = std::panic::Location::caller();

            tracing::trace_span!(
                "runtime.resource",
                concrete_type = "Semaphore",
                kind = "Sync",
                loc.file = location.file(),
                loc.line = location.line(),
                loc.col = location.column(),
                inherits_child_attrs = true,
            )
        };

        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let ll_sem = resource_span.in_scope(|| ll::Semaphore::new(permits));

        #[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
        let ll_sem = ll::Semaphore::new(permits);

        Self {
            ll_sem,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span,
        }
    }

    /// Creates a new semaphore with the initial number of permits.
    ///
    /// When using the `tracing` [unstable feature], a `Semaphore` created with
    /// `const_new` will not be instrumented. As such, it will not be visible
    /// in [`tokio-console`]. Instead, [`Semaphore::new`] should be used to
    /// create an instrumented object if that is needed.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Semaphore;
    ///
    /// static SEM: Semaphore = Semaphore::const_new(10);
    /// ```
    ///
    /// [`tokio-console`]: https://github.com/tokio-rs/console
    /// [unstable feature]: crate#unstable-features
    #[cfg(not(all(loom, test)))]
    pub const fn const_new(permits: usize) -> Self {
        Self {
            ll_sem: ll::Semaphore::const_new(permits),
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span: tracing::Span::none(),
        }
    }

    /// Creates a new closed semaphore with 0 permits.
    pub(crate) fn new_closed() -> Self {
        Self {
            ll_sem: ll::Semaphore::new_closed(),
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span: tracing::Span::none(),
        }
    }

    /// Creates a new closed semaphore with 0 permits.
    #[cfg(not(all(loom, test)))]
    pub(crate) const fn const_new_closed() -> Self {
        Self {
            ll_sem: ll::Semaphore::const_new_closed(),
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span: tracing::Span::none(),
        }
    }

    /// Returns the current number of available permits.
    pub fn available_permits(&self) -> usize {
        self.ll_sem.available_permits()
    }

    /// Adds `n` new permits to the semaphore.
    ///
    /// The maximum number of permits is [`Semaphore::MAX_PERMITS`], and this function will panic if the limit is exceeded.
    pub fn add_permits(&self, n: usize) {
        self.ll_sem.release(n);
    }

    /// Acquires a permit from the semaphore.
    ///
    /// If the semaphore has been closed, this returns an [`AcquireError`].
    /// Otherwise, this returns a [`SemaphorePermit`] representing the
    /// acquired permit.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute permits in the order they
    /// were requested. Cancelling a call to `acquire` makes you lose your place
    /// in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Semaphore;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let semaphore = Semaphore::new(2);
    ///
    ///     let permit_1 = semaphore.acquire().await.unwrap();
    ///     assert_eq!(semaphore.available_permits(), 1);
    ///
    ///     let permit_2 = semaphore.acquire().await.unwrap();
    ///     assert_eq!(semaphore.available_permits(), 0);
    ///
    ///     drop(permit_1);
    ///     assert_eq!(semaphore.available_permits(), 1);
    /// }
    /// ```
    ///
    /// [`AcquireError`]: crate::sync::AcquireError
    /// [`SemaphorePermit`]: crate::sync::SemaphorePermit
    pub async fn acquire(&self) -> Result<SemaphorePermit<'_>, AcquireError> {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let inner = trace::async_op(
            || self.ll_sem.acquire(1),
            self.resource_span.clone(),
            "Semaphore::acquire",
            "poll",
            true,
        );
        #[cfg(not(all(tokio_unstable, feature = "tracing")))]
        let inner = self.ll_sem.acquire(1);

        inner.await?;
        Ok(SemaphorePermit {
            sem: self,
            permits: 1,
        })
    }

    /// Acquires `n` permits from the semaphore.
    ///
    /// If the semaphore has been closed, this returns an [`AcquireError`].
    /// Otherwise, this returns a [`SemaphorePermit`] representing the
    /// acquired permits.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute permits in the order they
    /// were requested. Cancelling a call to `acquire_many` makes you lose your
    /// place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Semaphore;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let semaphore = Semaphore::new(5);
    ///
    ///     let permit = semaphore.acquire_many(3).await.unwrap();
    ///     assert_eq!(semaphore.available_permits(), 2);
    /// }
    /// ```
    ///
    /// [`AcquireError`]: crate::sync::AcquireError
    /// [`SemaphorePermit`]: crate::sync::SemaphorePermit
    pub async fn acquire_many(&self, n: u32) -> Result<SemaphorePermit<'_>, AcquireError> {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        trace::async_op(
            || self.ll_sem.acquire(n),
            self.resource_span.clone(),
            "Semaphore::acquire_many",
            "poll",
            true,
        )
        .await?;

        #[cfg(not(all(tokio_unstable, feature = "tracing")))]
        self.ll_sem.acquire(n).await?;

        Ok(SemaphorePermit {
            sem: self,
            permits: n,
        })
    }

    /// Tries to acquire a permit from the semaphore.
    ///
    /// If the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
    /// and a [`TryAcquireError::NoPermits`] if there are no permits left. Otherwise,
    /// this returns a [`SemaphorePermit`] representing the acquired permits.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{Semaphore, TryAcquireError};
    ///
    /// # fn main() {
    /// let semaphore = Semaphore::new(2);
    ///
    /// let permit_1 = semaphore.try_acquire().unwrap();
    /// assert_eq!(semaphore.available_permits(), 1);
    ///
    /// let permit_2 = semaphore.try_acquire().unwrap();
    /// assert_eq!(semaphore.available_permits(), 0);
    ///
    /// let permit_3 = semaphore.try_acquire();
    /// assert_eq!(permit_3.err(), Some(TryAcquireError::NoPermits));
    /// # }
    /// ```
    ///
    /// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
    /// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
    /// [`SemaphorePermit`]: crate::sync::SemaphorePermit
    pub fn try_acquire(&self) -> Result<SemaphorePermit<'_>, TryAcquireError> {
        match self.ll_sem.try_acquire(1) {
            Ok(()) => Ok(SemaphorePermit {
                sem: self,
                permits: 1,
            }),
            Err(e) => Err(e),
        }
    }

    /// Tries to acquire `n` permits from the semaphore.
    ///
    /// If the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
    /// and a [`TryAcquireError::NoPermits`] if there are not enough permits left.
    /// Otherwise, this returns a [`SemaphorePermit`] representing the acquired permits.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{Semaphore, TryAcquireError};
    ///
    /// # fn main() {
    /// let semaphore = Semaphore::new(4);
    ///
    /// let permit_1 = semaphore.try_acquire_many(3).unwrap();
    /// assert_eq!(semaphore.available_permits(), 1);
    ///
    /// let permit_2 = semaphore.try_acquire_many(2);
    /// assert_eq!(permit_2.err(), Some(TryAcquireError::NoPermits));
    /// # }
    /// ```
    ///
    /// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
    /// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
    /// [`SemaphorePermit`]: crate::sync::SemaphorePermit
    pub fn try_acquire_many(&self, n: u32) -> Result<SemaphorePermit<'_>, TryAcquireError> {
        match self.ll_sem.try_acquire(n) {
            Ok(()) => Ok(SemaphorePermit {
                sem: self,
                permits: n,
            }),
            Err(e) => Err(e),
        }
    }

    /// Acquires a permit from the semaphore.
    ///
    /// The semaphore must be wrapped in an [`Arc`] to call this method.
    /// If the semaphore has been closed, this returns an [`AcquireError`].
    /// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
    /// acquired permit.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute permits in the order they
    /// were requested. Cancelling a call to `acquire_owned` makes you lose your
    /// place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::Semaphore;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let semaphore = Arc::new(Semaphore::new(3));
    ///     let mut join_handles = Vec::new();
    ///
    ///     for _ in 0..5 {
    ///         let permit = semaphore.clone().acquire_owned().await.unwrap();
    ///         join_handles.push(tokio::spawn(async move {
    ///             // perform task...
    ///             // explicitly own `permit` in the task
    ///             drop(permit);
    ///         }));
    ///     }
    ///
    ///     for handle in join_handles {
    ///         handle.await.unwrap();
    ///     }
    /// }
    /// ```
    ///
    /// [`Arc`]: std::sync::Arc
    /// [`AcquireError`]: crate::sync::AcquireError
    /// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
    pub async fn acquire_owned(self: Arc<Self>) -> Result<OwnedSemaphorePermit, AcquireError> {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let inner = trace::async_op(
            || self.ll_sem.acquire(1),
            self.resource_span.clone(),
            "Semaphore::acquire_owned",
            "poll",
            true,
        );
        #[cfg(not(all(tokio_unstable, feature = "tracing")))]
        let inner = self.ll_sem.acquire(1);

        inner.await?;
        Ok(OwnedSemaphorePermit {
            sem: self,
            permits: 1,
        })
    }

    /// Acquires `n` permits from the semaphore.
    ///
    /// The semaphore must be wrapped in an [`Arc`] to call this method.
    /// If the semaphore has been closed, this returns an [`AcquireError`].
    /// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
    /// acquired permit.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute permits in the order they
    /// were requested. Cancelling a call to `acquire_many_owned` makes you lose
    /// your place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::Semaphore;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let semaphore = Arc::new(Semaphore::new(10));
    ///     let mut join_handles = Vec::new();
    ///
    ///     for _ in 0..5 {
    ///         let permit = semaphore.clone().acquire_many_owned(2).await.unwrap();
    ///         join_handles.push(tokio::spawn(async move {
    ///             // perform task...
    ///             // explicitly own `permit` in the task
    ///             drop(permit);
    ///         }));
    ///     }
    ///
    ///     for handle in join_handles {
    ///         handle.await.unwrap();
    ///     }
    /// }
    /// ```
    ///
    /// [`Arc`]: std::sync::Arc
    /// [`AcquireError`]: crate::sync::AcquireError
    /// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
    pub async fn acquire_many_owned(
        self: Arc<Self>,
        n: u32,
    ) -> Result<OwnedSemaphorePermit, AcquireError> {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let inner = trace::async_op(
            || self.ll_sem.acquire(n),
            self.resource_span.clone(),
            "Semaphore::acquire_many_owned",
            "poll",
            true,
        );
        #[cfg(not(all(tokio_unstable, feature = "tracing")))]
        let inner = self.ll_sem.acquire(n);

        inner.await?;
        Ok(OwnedSemaphorePermit {
            sem: self,
            permits: n,
        })
    }

    /// Tries to acquire a permit from the semaphore.
    ///
    /// The semaphore must be wrapped in an [`Arc`] to call this method. If
    /// the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
    /// and a [`TryAcquireError::NoPermits`] if there are no permits left.
    /// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
    /// acquired permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{Semaphore, TryAcquireError};
    ///
    /// # fn main() {
    /// let semaphore = Arc::new(Semaphore::new(2));
    ///
    /// let permit_1 = Arc::clone(&semaphore).try_acquire_owned().unwrap();
    /// assert_eq!(semaphore.available_permits(), 1);
    ///
    /// let permit_2 = Arc::clone(&semaphore).try_acquire_owned().unwrap();
    /// assert_eq!(semaphore.available_permits(), 0);
    ///
    /// let permit_3 = semaphore.try_acquire_owned();
    /// assert_eq!(permit_3.err(), Some(TryAcquireError::NoPermits));
    /// # }
    /// ```
    ///
    /// [`Arc`]: std::sync::Arc
    /// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
    /// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
    /// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
    pub fn try_acquire_owned(self: Arc<Self>) -> Result<OwnedSemaphorePermit, TryAcquireError> {
        match self.ll_sem.try_acquire(1) {
            Ok(()) => Ok(OwnedSemaphorePermit {
                sem: self,
                permits: 1,
            }),
            Err(e) => Err(e),
        }
    }

    /// Tries to acquire `n` permits from the semaphore.
    ///
    /// The semaphore must be wrapped in an [`Arc`] to call this method. If
    /// the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
    /// and a [`TryAcquireError::NoPermits`] if there are no permits left.
    /// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
    /// acquired permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{Semaphore, TryAcquireError};
    ///
    /// # fn main() {
    /// let semaphore = Arc::new(Semaphore::new(4));
    ///
    /// let permit_1 = Arc::clone(&semaphore).try_acquire_many_owned(3).unwrap();
    /// assert_eq!(semaphore.available_permits(), 1);
    ///
    /// let permit_2 = semaphore.try_acquire_many_owned(2);
    /// assert_eq!(permit_2.err(), Some(TryAcquireError::NoPermits));
    /// # }
    /// ```
    ///
    /// [`Arc`]: std::sync::Arc
    /// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
    /// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
    /// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
    pub fn try_acquire_many_owned(
        self: Arc<Self>,
        n: u32,
    ) -> Result<OwnedSemaphorePermit, TryAcquireError> {
        match self.ll_sem.try_acquire(n) {
            Ok(()) => Ok(OwnedSemaphorePermit {
                sem: self,
                permits: n,
            }),
            Err(e) => Err(e),
        }
    }

    /// Closes the semaphore.
    ///
    /// This prevents the semaphore from issuing new permits and notifies all pending waiters.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Semaphore;
    /// use std::sync::Arc;
    /// use tokio::sync::TryAcquireError;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let semaphore = Arc::new(Semaphore::new(1));
    ///     let semaphore2 = semaphore.clone();
    ///
    ///     tokio::spawn(async move {
    ///         let permit = semaphore.acquire_many(2).await;
    ///         assert!(permit.is_err());
    ///         println!("waiter received error");
    ///     });
    ///
    ///     println!("closing semaphore");
    ///     semaphore2.close();
    ///
    ///     // Cannot obtain more permits
    ///     assert_eq!(semaphore2.try_acquire().err(), Some(TryAcquireError::Closed))
    /// }
    /// ```
    pub fn close(&self) {
        self.ll_sem.close();
    }

    /// Returns true if the semaphore is closed
    pub fn is_closed(&self) -> bool {
        self.ll_sem.is_closed()
    }
}

impl<'a> SemaphorePermit<'a> {
    /// Forgets the permit **without** releasing it back to the semaphore.
    /// This can be used to reduce the amount of permits available from a
    /// semaphore.
    pub fn forget(mut self) {
        self.permits = 0;
    }

    /// Merge two [`SemaphorePermit`] instances together, consuming `other`
    /// without releasing the permits it holds.
    ///
    /// Permits held by both `self` and `other` are released when `self` drops.
    ///
    /// # Panics
    ///
    /// This function panics if permits from different [`Semaphore`] instances
    /// are merged.
    #[track_caller]
    pub fn merge(&mut self, mut other: Self) {
        assert!(
            std::ptr::eq(self.sem, other.sem),
            "merging permits from different semaphore instances"
        );
        self.permits += other.permits;
        other.permits = 0;
    }
}

impl OwnedSemaphorePermit {
    /// Forgets the permit **without** releasing it back to the semaphore.
    /// This can be used to reduce the amount of permits available from a
    /// semaphore.
    pub fn forget(mut self) {
        self.permits = 0;
    }

    /// Merge two [`OwnedSemaphorePermit`] instances together, consuming `other`
    /// without releasing the permits it holds.
    ///
    /// Permits held by both `self` and `other` are released when `self` drops.
    ///
    /// # Panics
    ///
    /// This function panics if permits from different [`Semaphore`] instances
    /// are merged.
    #[track_caller]
    pub fn merge(&mut self, mut other: Self) {
        assert!(
            Arc::ptr_eq(&self.sem, &other.sem),
            "merging permits from different semaphore instances"
        );
        self.permits += other.permits;
        other.permits = 0;
    }

    /// Returns the [`Semaphore`] from which this permit was acquired.
    pub fn semaphore(&self) -> &Arc<Semaphore> {
        &self.sem
    }
}

impl Drop for SemaphorePermit<'_> {
    fn drop(&mut self) {
        self.sem.add_permits(self.permits as usize);
    }
}

impl Drop for OwnedSemaphorePermit {
    fn drop(&mut self) {
        self.sem.add_permits(self.permits as usize);
    }
}