1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Low-level API for sampling indices
#[cfg(feature = "alloc")] use core::slice;
#[cfg(all(feature = "alloc", not(feature = "std")))]
use crate::alloc::vec::{self, Vec};
#[cfg(feature = "std")] use std::vec;
// BTreeMap is not as fast in tests, but better than nothing.
#[cfg(all(feature = "alloc", not(feature = "std")))]
use crate::alloc::collections::BTreeSet;
#[cfg(feature = "std")] use std::collections::HashSet;
#[cfg(feature = "alloc")]
use crate::distributions::{uniform::SampleUniform, Distribution, Uniform};
use crate::Rng;
/// A vector of indices.
///
/// Multiple internal representations are possible.
#[derive(Clone, Debug)]
pub enum IndexVec {
#[doc(hidden)]
U32(Vec<u32>),
#[doc(hidden)]
USize(Vec<usize>),
}
impl IndexVec {
/// Returns the number of indices
#[inline]
pub fn len(&self) -> usize {
match *self {
IndexVec::U32(ref v) => v.len(),
IndexVec::USize(ref v) => v.len(),
}
}
/// Returns `true` if the length is 0.
#[inline]
pub fn is_empty(&self) -> bool {
match *self {
IndexVec::U32(ref v) => v.is_empty(),
IndexVec::USize(ref v) => v.is_empty(),
}
}
/// Return the value at the given `index`.
///
/// (Note: we cannot implement [`std::ops::Index`] because of lifetime
/// restrictions.)
#[inline]
pub fn index(&self, index: usize) -> usize {
match *self {
IndexVec::U32(ref v) => v[index] as usize,
IndexVec::USize(ref v) => v[index],
}
}
/// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
#[inline]
pub fn into_vec(self) -> Vec<usize> {
match self {
IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
IndexVec::USize(v) => v,
}
}
/// Iterate over the indices as a sequence of `usize` values
#[inline]
pub fn iter(&self) -> IndexVecIter<'_> {
match *self {
IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
}
}
/// Convert into an iterator over the indices as a sequence of `usize` values
#[inline]
pub fn into_iter(self) -> IndexVecIntoIter {
match self {
IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
}
}
}
impl PartialEq for IndexVec {
fn eq(&self, other: &IndexVec) -> bool {
use self::IndexVec::*;
match (self, other) {
(&U32(ref v1), &U32(ref v2)) => v1 == v2,
(&USize(ref v1), &USize(ref v2)) => v1 == v2,
(&U32(ref v1), &USize(ref v2)) => {
(v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
}
(&USize(ref v1), &U32(ref v2)) => {
(v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
}
}
}
}
impl From<Vec<u32>> for IndexVec {
#[inline]
fn from(v: Vec<u32>) -> Self {
IndexVec::U32(v)
}
}
impl From<Vec<usize>> for IndexVec {
#[inline]
fn from(v: Vec<usize>) -> Self {
IndexVec::USize(v)
}
}
/// Return type of `IndexVec::iter`.
#[derive(Debug)]
pub enum IndexVecIter<'a> {
#[doc(hidden)]
U32(slice::Iter<'a, u32>),
#[doc(hidden)]
USize(slice::Iter<'a, usize>),
}
impl<'a> Iterator for IndexVecIter<'a> {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
use self::IndexVecIter::*;
match *self {
U32(ref mut iter) => iter.next().map(|i| *i as usize),
USize(ref mut iter) => iter.next().cloned(),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match *self {
IndexVecIter::U32(ref v) => v.size_hint(),
IndexVecIter::USize(ref v) => v.size_hint(),
}
}
}
impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
/// Return type of `IndexVec::into_iter`.
#[derive(Clone, Debug)]
pub enum IndexVecIntoIter {
#[doc(hidden)]
U32(vec::IntoIter<u32>),
#[doc(hidden)]
USize(vec::IntoIter<usize>),
}
impl Iterator for IndexVecIntoIter {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
use self::IndexVecIntoIter::*;
match *self {
U32(ref mut v) => v.next().map(|i| i as usize),
USize(ref mut v) => v.next(),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
use self::IndexVecIntoIter::*;
match *self {
U32(ref v) => v.size_hint(),
USize(ref v) => v.size_hint(),
}
}
}
impl ExactSizeIterator for IndexVecIntoIter {}
/// Randomly sample exactly `amount` distinct indices from `0..length`, and
/// return them in random order (fully shuffled).
///
/// This method is used internally by the slice sampling methods, but it can
/// sometimes be useful to have the indices themselves so this is provided as
/// an alternative.
///
/// The implementation used is not specified; we automatically select the
/// fastest available algorithm for the `length` and `amount` parameters
/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
/// complexity is `O(amount)`, except that when `amount` is small, performance
/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
/// `O(length)`.
///
/// Note that performance is significantly better over `u32` indices than over
/// `u64` indices. Because of this we hide the underlying type behind an
/// abstraction, `IndexVec`.
///
/// If an allocation-free `no_std` function is required, it is suggested
/// to adapt the internal `sample_floyd` implementation.
///
/// Panics if `amount > length`.
pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
where R: Rng + ?Sized {
if amount > length {
panic!("`amount` of samples must be less than or equal to `length`");
}
if length > (::core::u32::MAX as usize) {
// We never want to use inplace here, but could use floyd's alg
// Lazy version: always use the cache alg.
return sample_rejection(rng, length, amount);
}
let amount = amount as u32;
let length = length as u32;
// Choice of algorithm here depends on both length and amount. See:
// https://github.com/rust-random/rand/pull/479
// We do some calculations with f32. Accuracy is not very important.
if amount < 163 {
const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
let j = if length < 500_000 { 0 } else { 1 };
let amount_fp = amount as f32;
let m4 = C[0][j] * amount_fp;
// Short-cut: when amount < 12, floyd's is always faster
if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
sample_inplace(rng, length, amount)
} else {
sample_floyd(rng, length, amount)
}
} else {
const C: [f32; 2] = [270.0, 330.0 / 9.0];
let j = if length < 500_000 { 0 } else { 1 };
if (length as f32) < C[j] * (amount as f32) {
sample_inplace(rng, length, amount)
} else {
sample_rejection(rng, length, amount)
}
}
}
/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
/// combination algorithm.
///
/// The output values are fully shuffled. (Overhead is under 50%.)
///
/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
// For small amount we use Floyd's fully-shuffled variant. For larger
// amounts this is slow due to Vec::insert performance, so we shuffle
// afterwards. Benchmarks show little overhead from extra logic.
let floyd_shuffle = amount < 50;
debug_assert!(amount <= length);
let mut indices = Vec::with_capacity(amount as usize);
for j in length - amount..length {
let t = rng.gen_range(0, j + 1);
if floyd_shuffle {
if let Some(pos) = indices.iter().position(|&x| x == t) {
indices.insert(pos, j);
continue;
}
} else if indices.contains(&t) {
indices.push(j);
continue;
}
indices.push(t);
}
if !floyd_shuffle {
// Reimplement SliceRandom::shuffle with smaller indices
for i in (1..amount).rev() {
// invariant: elements with index > i have been locked in place.
indices.swap(i as usize, rng.gen_range(0, i + 1) as usize);
}
}
IndexVec::from(indices)
}
/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
/// partial Fisher-Yates method.
/// Sample an amount of indices using an inplace partial fisher yates method.
///
/// This allocates the entire `length` of indices and randomizes only the first `amount`.
/// It then truncates to `amount` and returns.
///
/// This method is not appropriate for large `length` and potentially uses a lot
/// of memory; because of this we only implement for `u32` index (which improves
/// performance in all cases).
///
/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
where R: Rng + ?Sized {
debug_assert!(amount <= length);
let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
indices.extend(0..length);
for i in 0..amount {
let j: u32 = rng.gen_range(i, length);
indices.swap(i as usize, j as usize);
}
indices.truncate(amount as usize);
debug_assert_eq!(indices.len(), amount as usize);
IndexVec::from(indices)
}
trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform + core::hash::Hash {
fn zero() -> Self;
fn as_usize(self) -> usize;
}
impl UInt for u32 {
#[inline]
fn zero() -> Self {
0
}
#[inline]
fn as_usize(self) -> usize {
self as usize
}
}
impl UInt for usize {
#[inline]
fn zero() -> Self {
0
}
#[inline]
fn as_usize(self) -> usize {
self
}
}
/// Randomly sample exactly `amount` indices from `0..length`, using rejection
/// sampling.
///
/// Since `amount <<< length` there is a low chance of a random sample in
/// `0..length` being a duplicate. We test for duplicates and resample where
/// necessary. The algorithm is `O(amount)` time and memory.
///
/// This function is generic over X primarily so that results are value-stable
/// over 32-bit and 64-bit platforms.
fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
where
R: Rng + ?Sized,
IndexVec: From<Vec<X>>,
{
debug_assert!(amount < length);
#[cfg(feature = "std")]
let mut cache = HashSet::with_capacity(amount.as_usize());
#[cfg(not(feature = "std"))]
let mut cache = BTreeSet::new();
let distr = Uniform::new(X::zero(), length);
let mut indices = Vec::with_capacity(amount.as_usize());
for _ in 0..amount.as_usize() {
let mut pos = distr.sample(rng);
while !cache.insert(pos) {
pos = distr.sample(rng);
}
indices.push(pos);
}
debug_assert_eq!(indices.len(), amount.as_usize());
IndexVec::from(indices)
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(all(feature = "alloc", not(feature = "std")))] use crate::alloc::vec;
#[cfg(feature = "std")] use std::vec;
#[test]
fn test_sample_boundaries() {
let mut r = crate::test::rng(404);
assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
// These algorithms should be fast with big numbers. Test average.
let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
assert!(1 << 25 < sum && sum < (1 << 25) * 25);
let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
assert!(1 << 25 < sum && sum < (1 << 25) * 25);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_sample_alg() {
let seed_rng = crate::test::rng;
// We can't test which algorithm is used directly, but Floyd's alg
// should produce different results from the others. (Also, `inplace`
// and `cached` currently use different sizes thus produce different results.)
// A small length and relatively large amount should use inplace
let (length, amount): (usize, usize) = (100, 50);
let v1 = sample(&mut seed_rng(420), length, amount);
let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
// Test Floyd's alg does produce different results
let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
assert!(v1 != v3);
// A large length and small amount should use Floyd
let (length, amount): (usize, usize) = (1 << 20, 50);
let v1 = sample(&mut seed_rng(421), length, amount);
let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
// A large length and larger amount should use cache
let (length, amount): (usize, usize) = (1 << 20, 600);
let v1 = sample(&mut seed_rng(422), length, amount);
let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
}
}