1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gamma and derived distributions.
#![allow(deprecated)]
use self::ChiSquaredRepr::*;
use self::GammaRepr::*;
use crate::distributions::normal::StandardNormal;
use crate::distributions::{Distribution, Exp, Open01};
use crate::Rng;
/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000), 363-372.
/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Gamma {
repr: GammaRepr,
}
#[derive(Clone, Copy, Debug)]
enum GammaRepr {
Large(GammaLargeShape),
One(Exp),
Small(GammaSmallShape),
}
// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.
/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaSmallShape {
inv_shape: f64,
large_shape: GammaLargeShape,
}
/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaLargeShape {
scale: f64,
c: f64,
d: f64,
}
impl Gamma {
/// Construct an object representing the `Gamma(shape, scale)`
/// distribution.
///
/// Panics if `shape <= 0` or `scale <= 0`.
#[inline]
pub fn new(shape: f64, scale: f64) -> Gamma {
assert!(shape > 0.0, "Gamma::new called with shape <= 0");
assert!(scale > 0.0, "Gamma::new called with scale <= 0");
let repr = if shape == 1.0 {
One(Exp::new(1.0 / scale))
} else if shape < 1.0 {
Small(GammaSmallShape::new_raw(shape, scale))
} else {
Large(GammaLargeShape::new_raw(shape, scale))
};
Gamma { repr }
}
}
impl GammaSmallShape {
fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
GammaSmallShape {
inv_shape: 1. / shape,
large_shape: GammaLargeShape::new_raw(shape + 1.0, scale),
}
}
}
impl GammaLargeShape {
fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
let d = shape - 1. / 3.;
GammaLargeShape {
scale,
c: 1. / (9. * d).sqrt(),
d,
}
}
}
impl Distribution<f64> for Gamma {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
match self.repr {
Small(ref g) => g.sample(rng),
One(ref g) => g.sample(rng),
Large(ref g) => g.sample(rng),
}
}
}
impl Distribution<f64> for GammaSmallShape {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let u: f64 = rng.sample(Open01);
self.large_shape.sample(rng) * u.powf(self.inv_shape)
}
}
impl Distribution<f64> for GammaLargeShape {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
loop {
let x = rng.sample(StandardNormal);
let v_cbrt = 1.0 + self.c * x;
if v_cbrt <= 0.0 {
// a^3 <= 0 iff a <= 0
continue;
}
let v = v_cbrt * v_cbrt * v_cbrt;
let u: f64 = rng.sample(Open01);
let x_sqr = x * x;
if u < 1.0 - 0.0331 * x_sqr * x_sqr
|| u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln())
{
return self.d * v * self.scale;
}
}
}
}
/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct ChiSquared {
repr: ChiSquaredRepr,
}
#[derive(Clone, Copy, Debug)]
enum ChiSquaredRepr {
// k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
// e.g. when alpha = 1/2 as it would be for this case, so special-
// casing and using the definition of N(0,1)^2 is faster.
DoFExactlyOne,
DoFAnythingElse(Gamma),
}
impl ChiSquared {
/// Create a new chi-squared distribution with degrees-of-freedom
/// `k`. Panics if `k < 0`.
pub fn new(k: f64) -> ChiSquared {
let repr = if k == 1.0 {
DoFExactlyOne
} else {
assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
};
ChiSquared { repr }
}
}
impl Distribution<f64> for ChiSquared {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
match self.repr {
DoFExactlyOne => {
// k == 1 => N(0,1)^2
let norm = rng.sample(StandardNormal);
norm * norm
}
DoFAnythingElse(ref g) => g.sample(rng),
}
}
}
/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct FisherF {
numer: ChiSquared,
denom: ChiSquared,
// denom_dof / numer_dof so that this can just be a straight
// multiplication, rather than a division.
dof_ratio: f64,
}
impl FisherF {
/// Create a new `FisherF` distribution, with the given
/// parameter. Panics if either `m` or `n` are not positive.
pub fn new(m: f64, n: f64) -> FisherF {
assert!(m > 0.0, "FisherF::new called with `m < 0`");
assert!(n > 0.0, "FisherF::new called with `n < 0`");
FisherF {
numer: ChiSquared::new(m),
denom: ChiSquared::new(n),
dof_ratio: n / m,
}
}
}
impl Distribution<f64> for FisherF {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
}
}
/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct StudentT {
chi: ChiSquared,
dof: f64,
}
impl StudentT {
/// Create a new Student t distribution with `n` degrees of
/// freedom. Panics if `n <= 0`.
pub fn new(n: f64) -> StudentT {
assert!(n > 0.0, "StudentT::new called with `n <= 0`");
StudentT {
chi: ChiSquared::new(n),
dof: n,
}
}
}
impl Distribution<f64> for StudentT {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let norm = rng.sample(StandardNormal);
norm * (self.dof / self.chi.sample(rng)).sqrt()
}
}
/// The Beta distribution with shape parameters `alpha` and `beta`.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Beta {
gamma_a: Gamma,
gamma_b: Gamma,
}
impl Beta {
/// Construct an object representing the `Beta(alpha, beta)`
/// distribution.
///
/// Panics if `shape <= 0` or `scale <= 0`.
pub fn new(alpha: f64, beta: f64) -> Beta {
assert!((alpha > 0.) & (beta > 0.));
Beta {
gamma_a: Gamma::new(alpha, 1.),
gamma_b: Gamma::new(beta, 1.),
}
}
}
impl Distribution<f64> for Beta {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let x = self.gamma_a.sample(rng);
let y = self.gamma_b.sample(rng);
x / (x + y)
}
}
#[cfg(test)]
mod test {
use super::{Beta, ChiSquared, FisherF, StudentT};
use crate::distributions::Distribution;
const N: u32 = 100;
#[test]
fn test_chi_squared_one() {
let chi = ChiSquared::new(1.0);
let mut rng = crate::test::rng(201);
for _ in 0..N {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let chi = ChiSquared::new(0.5);
let mut rng = crate::test::rng(202);
for _ in 0..N {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let chi = ChiSquared::new(30.0);
let mut rng = crate::test::rng(203);
for _ in 0..N {
chi.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0);
}
#[test]
fn test_f() {
let f = FisherF::new(2.0, 32.0);
let mut rng = crate::test::rng(204);
for _ in 0..N {
f.sample(&mut rng);
}
}
#[test]
fn test_t() {
let t = StudentT::new(11.0);
let mut rng = crate::test::rng(205);
for _ in 0..N {
t.sample(&mut rng);
}
}
#[test]
fn test_beta() {
let beta = Beta::new(1.0, 2.0);
let mut rng = crate::test::rng(201);
for _ in 0..N {
beta.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_beta_invalid_dof() {
Beta::new(0., 0.);
}
}