1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The dirichlet distribution.
#![allow(deprecated)]
#![allow(clippy::all)]
use crate::distributions::gamma::Gamma;
use crate::distributions::Distribution;
use crate::Rng;
/// The dirichelet distribution `Dirichlet(alpha)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector alpha of positive reals.
/// It is a multivariate generalization of the beta distribution.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Debug)]
pub struct Dirichlet {
/// Concentration parameters (alpha)
alpha: Vec<f64>,
}
impl Dirichlet {
/// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
///
/// # Panics
/// - if `alpha.len() < 2`
#[inline]
pub fn new<V: Into<Vec<f64>>>(alpha: V) -> Dirichlet {
let a = alpha.into();
assert!(a.len() > 1);
for i in 0..a.len() {
assert!(a[i] > 0.0);
}
Dirichlet { alpha: a }
}
/// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`.
///
/// # Panics
/// - if `alpha <= 0.0`
/// - if `size < 2`
#[inline]
pub fn new_with_param(alpha: f64, size: usize) -> Dirichlet {
assert!(alpha > 0.0);
assert!(size > 1);
Dirichlet {
alpha: vec![alpha; size],
}
}
}
impl Distribution<Vec<f64>> for Dirichlet {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64> {
let n = self.alpha.len();
let mut samples = vec![0.0f64; n];
let mut sum = 0.0f64;
for i in 0..n {
let g = Gamma::new(self.alpha[i], 1.0);
samples[i] = g.sample(rng);
sum += samples[i];
}
let invacc = 1.0 / sum;
for i in 0..n {
samples[i] *= invacc;
}
samples
}
}
#[cfg(test)]
mod test {
use super::Dirichlet;
use crate::distributions::Distribution;
#[test]
fn test_dirichlet() {
let d = Dirichlet::new(vec![1.0, 2.0, 3.0]);
let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
.map(|x| {
assert!(x > 0.0);
x
})
.collect();
}
#[test]
fn test_dirichlet_with_param() {
let alpha = 0.5f64;
let size = 2;
let d = Dirichlet::new_with_param(alpha, size);
let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
.map(|x| {
assert!(x > 0.0);
x
})
.collect();
}
#[test]
#[should_panic]
fn test_dirichlet_invalid_length() {
Dirichlet::new_with_param(0.5f64, 1);
}
#[test]
#[should_panic]
fn test_dirichlet_invalid_alpha() {
Dirichlet::new_with_param(0.0f64, 2);
}
}